Chứng minh rằng:
a) \(h = {{bc} \over a}\);
b) \({{{b^2}} \over {{c^2}}} = {{b'} \over {c'}}.\)
Gợi ý làm bài:
a) Hai cách:
Cách 1: Dùng công thức tính diện tích tam giác vuông ABC:
\(S = {1 \over 2}ah = {1 \over 2}bc\) suy ra \(h = {{bc} \over a}.\)
Cách 2: dùng tam giác đồng dạng ∆ABC đồng dạng ∆HBA suy ra \({{AC} \over {HA}} = {{BC} \over {BA}}\) tức là \({b \over h} = {a \over c}\), hay \(h = {{bc} \over a}.\)
b) Từ \({b^2} = ab',{c^2} = ac'\) suy ra \({{{b^2}} \over {{c^2}}} = {{b'} \over {c'}}\).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục