Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 15 trang 223 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 15 trang 223 Sách bài tập Hình học 11 Nâng cao

Cho hình thang vuông ABCD có \(\widehat A = \widehat D = {90^0}\) , \(AB = 2{\rm{a}},C{\rm{D}} = a,A{\rm{D}} = 3{\rm{a}}\) M là điểm bất kì thuộc đoạn thẳng AD.

a) Xác định vị trí điểm M để hai đường thẳng BM và CM vuông góc với nhau.

b) Gọi S là điểm thuộc đường thẳng vuông góc với mp(ABC) kẻ từ điểm M sao cho SM = AM. Xét mặt phẳng (P) đi qua M và vuông góc với SA. Thiết diện của hình chóp S.ABCD cắt bởi (P) là hình gì? Tính diện tích thiết diện thu được theo a và x, ở đây \(x = AM\left( {0 < x \le 3{\rm{a}}} \right)\).

Trả lời

 

a) Đặt \(AM = x\) thì \(DM=3a-x\).

Dễ thấy \(BC = a\sqrt {10} \)

\(\eqalign{  & M{B^2} = 4{{\rm{a}}^2} + {x^2}  \cr  & M{C^2} = {a^2} + {\left( {3{\rm{a}} - x} \right)^2} \cr} \)

Hai đường thẳng BM và CM vuông góc với nhau khi và chỉ khi

\(\eqalign{  & B{C^2} = M{B^2} + M{C^2}  \cr  &  \Leftrightarrow 10{a^2} = 2{{\rm{x}}^2} + 14{a^2} - 6ax  \cr  &  \Leftrightarrow {x^2} - 3ax + 2{a^2} = 0  \cr  &  \Rightarrow x = a,x = 2a \cr} \)

Vậy có hai vị trí của M để MB và MC vuông góc với nhau.

b) Vì \(SM \bot \left( {ABC{\rm{D}}} \right),AB \bot MA\) nên \(AB \bot SA\) (định lí ba đường vuông góc). Mặt khác \(\left( P \right) \bot SA\) nên (P) // AB.

Do MA = MS, (P) đi qua M và \(\left( P \right) \bot SA\) nên (P) cắt SA tại trung điểm A1 của SA. Từ đó (P) cắt (SAB) theo giao tuyến A1B1 với A1B1 // AB; (P) cắt (ABCD) theo giao tuyến MN song song với AB. Như vậy, thiết diện của hình chóp S.ABCD khi cắt bởi mp(P) là hình thang vuông M A1B1N (tứ giác M A1B1N là hình thang vuông MN // A1B1, ngoài ta \(AB \bot \left( {SA{\rm{D}}} \right)\) nên \({A_1}{B_1} \bot \left( {SA{\rm{D}}} \right)\), tức là \({A_1}{B_1} \bot M{A_1}\))

\(\eqalign{  & {S_{M{A_1}{B_1}N}} = {1 \over 2}\left( {{A_1}{B_1} + MN} \right).{A_1}M  \cr  & {A_1}{B_1} = {1 \over 2}AB = a,{A_1}M = {1 \over 2}SA = {{x\sqrt 2 } \over 2} \cr} \)

Gọi I là giao điểm của AD và BC thì IA = 6a. Ta có

\(\eqalign{  & {{MN} \over {AB}} = {{IM} \over {IA}} \Leftrightarrow {{MN} \over {2{\rm{a}}}} = {{6{\rm{a}} - x} \over {6{\rm{a}}}}  \cr  &  \Rightarrow MN = {{6a - x} \over 3} \cr} \)

Vậy

\(\eqalign{  & {S_{M{A_1}{B_1}N}} = {1 \over 2}\left( {a + {{6{\rm{a}} - x} \over 3}} \right).{{x\sqrt 2 } \over 2}  \cr  &  = {{\sqrt 2 \left( {9{\rm{a}} - x} \right)x} \over {12}}\,\left( {voi\,0 < x \le 3{\rm{a}}} \right) \cr} \).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan