Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.50 trang 16 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm các nghiệm của mỗi phương trình sau trong khoảng

Tìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( {0;2\pi } \right)\):

 a) \({{\left| {\sin x} \right|} \over {\sin x}} = \cos x - {1 \over 2}\)                                     

b) \({{\sin 3x - \sin x} \over {\sqrt {1 - \cos 2x} }} = \cos 2x + \sin 2x\)

Giải

a) Vì trên khoảng \(\left( {0;2\pi } \right),\) phương trình không xác định với \(x = \pi \) nên ta xét phương trình trên từng khoảng \(\left( {0;\pi } \right)\) và \(\left( {\pi ;2\pi } \right)\)

- Trên khoảng \(\left( {0;\pi } \right)\) ta có \(\sin x > 0\) nên phương trình trở thành \(1 = \cos x - {1 \over 2}\)

- Trên khoảng \(\left( {\pi ;2\pi } \right)\) ta có \(\sin x < 0\) nên phương trình trở thành \( - 1 = \cos x - {1 \over 2}\)

Giải ra ta được: \(x = {{4\pi } \over 3}\)

b)

Tương tự: Biến đổi phương trình thành \({{\cos 2x.\sin x} \over {\left| {\sin x} \right|}} = \cos \left( {2x - {\pi  \over 4}} \right),\) sau đó xét phương trình trên mỗi khoảng \(\left( {0;\pi } \right)\) và \(\left( {\pi ;2\pi } \right)\)

Giải ra ta được: \(x = {\pi  \over {16}},x = {{9\pi } \over {16}},x = {{21\pi } \over {16}}\) và \(x = {{29\pi } \over {16}}\)

sachbaitap.net

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan