Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Cho hình chóp S.ABCD có đáy là hình thoi, cạnh bên SA = AB và SA vuông góc với BC.
a) Tính góc giữa hai đường thẳng SD và BC
b) Gọi I, J lần lượt là các điểm thuộc SB và SD sao cho IJ // BD. Chứng minh rằng góc giữa AC và IJ không phụ thuộc vào vị trí của I và J.
Trả lời:
a) Vì BC // AD nên góc giữa SD và BC bằng góc giữa SD và AD.
Từ giả thiết, ta có \(SA \bot BC\) nên \(SA \bot A{\rm{D}}\) mặt khác SA bằng cạnh của hình thoi ABCD, nên \(\widehat {S{\rm{D}}A} = {45^0}\) là góc phải tìm.
Vậy góc giữa BC và SD bằng 45°.
b) Do ABCD là hình thoi nên \(AC \bot B{\rm{D}}\) . Mặt khác IJ // BD nên \(AC \bot IJ\) tức là góc giữa IJ và AC bằng 90° không đổi.
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục