Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.66 trang 19 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm các nghiệm thuộc khoảng

Tìm các nghiệm thuộc khoảng\(\left( {0;2\pi } \right)\) của phương trình

               \({{\sqrt {1 + \cos x}  + \sqrt {1 - \cos x} } \over {\cos x}} = 4\sin x\)

Giải

Điều kiện xác định của phương trình \(\cos x \ne 0.\) Với điều kiện đó, phương trình đã cho tương đương với phương trình:

\(\sqrt 2 \left( {\left| {\cos {x \over 2}} \right| + \left| {\sin {x \over 2}} \right|} \right) = 2\sin 2x\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

Do \(x = \pi \) không là nghiệm của (1) nên ta chỉ cần xét hai khả năng sau:

1) \(x \in \left( {0;\pi } \right).\) Lúc này \(0 < {x \over 2} < {\pi  \over 2},\) kéo theo \(\cos {x \over 2} > 0\) và  \(\sin {x \over 2} > 0\). Do đó (1) trở thành

\({1 \over {\sqrt 2 }}\left( {\sin {x \over 2} + \cos {x \over 2}} \right) = \sin 2x \)

\(\Leftrightarrow \sin \left( {{x \over 2} + {\pi \over 4}} \right) = \sin 2x \Leftrightarrow \left[ \matrix{
x = {\pi \over 6} + {{4k\pi } \over 3} \hfill \cr
x = {{3\pi } \over {10}} + {{4l\pi } \over 5} \hfill \cr} \right.\)

Để tìm nghiệm thuộc khoảng \(\left( {0;\pi } \right),\) ta cần tìm k và l nguyên sao cho

\( \bullet \,\,0 < {\pi  \over 6} + k{{4\pi } \over 3} < \pi  \Leftrightarrow  - {1 \over 8} < k < {5 \over 8} \Leftrightarrow k = 0.\) Ta nhận \(x = {\pi  \over 6}\)

\( \bullet \,\,0 < {{3\pi } \over {10}} + l{{4\pi } \over 5} < \pi  \Leftrightarrow  - {3 \over 8} < l < {7 \over 8} \Leftrightarrow l = 0.\) Ta nhận \(x = {{3\pi } \over {10}}\)

2) \(x \in \left( {\pi ;2\pi } \right).\) Lúc này \({\pi  \over 2} < {x \over 2} < \pi ,\) kéo theo \(\cos {x \over 2} < 0\) và  \(\sin {x \over 2} > 0\). Do đó (1) trở thành

\({1 \over {\sqrt 2 }}\left( {\sin {x \over 2} - \cos {x \over 2}} \right) = \sin 2x\)

\(\Leftrightarrow \sin \left( {{x \over 2} - {\pi \over 4}} \right) = \sin 2x \Leftrightarrow \left[ \matrix{
x = - {\pi \over 6} + {{4k\pi } \over 3} \hfill \cr
x = {\pi \over 2} + l{{4\pi } \over 5} \hfill \cr} \right.\)

Tương tự trên, ta có

\( \bullet \,\,\pi  <  - {\pi  \over 6} + k{{4\pi } \over 3} < 2\pi  \Leftrightarrow {7 \over 8} < k < {{13} \over 8} \Leftrightarrow k = 1.\)

Ta nhận được \(x =  - {\pi  \over 6} + {{4\pi } \over 3} = {{7\pi } \over 6}\)

\( \bullet \,\,\pi  < {\pi  \over 2} + l{{4\pi } \over 5} < 2\pi  \Leftrightarrow {5 \over 8} < l < {{15} \over 8} \Leftrightarrow l = 1.\)

Ta nhận được \(x = {\pi  \over 2} + {{4\pi } \over 5} = {{13\pi } \over {10}}\)

Kết luận: Trong khoảng \(\left( {0;2\pi } \right),\) phương trình đã cho có 4 nghiệm là \(x = {\pi  \over 6},x = {{3\pi } \over {10}},x = {7 \pi \over 6}\) và \(x = {{13\pi } \over {10}}\)

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan