Xem thêm: Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Cho tam giác ABC vuông tại A, vẽ đường cao AH. Chu vi của tam giác ABH là 30cm và chu vi của tam giác ACH là 40cm. Tính chu vi của tam giác ABC.
Gợi ý làm bài:
Gọi a, b, c lần lượt là chu vi của các tam giác ABC, ABH, ACH.
Ta có: \(b = 30cm,c = 40cm.\)
Xét hai tam giác vuông AHB và CHA, ta có:
\(\widehat {AHB} = \widehat {CHA} = 90^\circ \)
\(\widehat {ABH} = \widehat {CAH}\) (hai góc cùng phụ \(\widehat {ACB}\))
Vậy \(\Delta AHB\) đồng dạng \(\Delta CHA\) (g.g)
Suy ra: \({{HB} \over {HA}} = {{HA} \over {HC}} = {{BA} \over {AC}} = {{HB + HA + BA} \over {HA + HC + AC}} = {b \over c}\)
Suy ra: \({{BA} \over {AC}} = {b \over c} = {{30} \over {40}} = {3 \over 4}\)
Suy ra: \({{BA} \over 3} = {{AC} \over 4} \Rightarrow {{B{A^2}} \over 9} = {{A{C^2}} \over {16}} = {{B{A^2} + A{C^2}} \over {9 + 16}} = {{B{A^2} + A{C^2}} \over {25}}\)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
Suy ra: \({{B{A^2}} \over 9} = {{A{C^2}} \over {16}} = {{B{C^2}} \over {25}} \Rightarrow {{BA} \over 3} = {{AC} \over 4} = {{BC} \over 5}\)
Ta có các tam giác ABH, CAH, CBA đồng dạng với nhau nên:
\(b:c:a = BA:AC:BC = 3:4:5\)
Suy ra: \({b \over 3} = {c \over 4} = {a \over 5} \Leftrightarrow {{30} \over 3} = {{40} \over 4} = {a \over 5} \Rightarrow a = {{30} \over 3}.5 = 50\left( {cm} \right)\)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục