Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.16. Trang 110 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
4.5 trên 8 phiếu

Cho tam giác ABC. Chứng minh rằng:

Cho tam giác ABC có \(\widehat A = 60^\circ \). Chứng minh rằng:

BC2 = AB2 + AC2 – AB.AC.

Gợi ý làm bài:

Kẻ đường cao BH của tam giác ABC thì H nằm trên tia AC (để \(\widehat {BAC} = 60^\circ \) là góc nhọn ), do đó HC2 = (AC – AH)2

Công thức Py-ta-go cho ta:

BC2 = BH2 + HC2

= BH2 + (AC – AH)2

= BH2 + AH2 +AC2 – 2AC.AH

= AB2 + AC2 – 2AC.AH.

Do \(\widehat {BAC} = 60^\circ \) nên AH = AB cos60º = \({{AB} \over 2},\) suy ra BC2 = AB2 + AC2 − AB.AC .

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan