Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Cho hai tam giác cân ABC và DBC có chung cạnh đáy BC và nằm trong hai mặt phẳng khác nhau.
a) Chứng minh rằng AD vuông góc với CB.
b) Gọi M, N là các điểm lần lượt thuộc các đường thẳng AB và DB sao cho \(\overrightarrow {MA} = k\overrightarrow {MB} ,\overrightarrow {N{\rm{D}}} = k\overrightarrow {NB} \) . Tính góc giữa hai đường thẳng MN và BC.
Trả lời:
a) Gọi I là trung điểm của BC thì \(AI \bot BC,DI \bot BC\) .
Ta có \(\overrightarrow {A{\rm{D}}} = \overrightarrow {AI} + \overrightarrow {I{\rm{D}}} \).
Xét
\(\eqalign{ & \overrightarrow {BC} .\overrightarrow {A{\rm{D}}} = \overrightarrow {BC} \left( {\overrightarrow {AI} + \overrightarrow {I{\rm{D}}} } \right) \cr & = \overrightarrow {BC} .\overrightarrow {AI} + \overrightarrow {BC} .\overrightarrow {I{\rm{D}}} = 0 \cr} \)
Vậy \(BC \bot A{\rm{D}}\).
b) Từ giả thiết
\(\eqalign{ & \overrightarrow {MA} = k\overrightarrow {MB} \cr & \overrightarrow {N{\rm{D}}} = k\overrightarrow {NB} \cr} \)
ta có MN // AD
Vậy góc giữa hai đường thẳng MN và BC bằng góc giữa hai đường thẳng AD và BC. Theo câu a) thì AD vuông góc BC, nên góc giữa MN và BC bằng 90°.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục