Trong mặt phẳng cho đa giác đều H có 20 cạnh. Hỏi
a) Có bao nhiêu tam giác mà cả ba đỉnh đều là đỉnh của H?
b) Trong số các tam giác ở câu a) có bao nhiêu tam giác mà
i) Có đúng hai cạnh là cạnh của H?
ii) Có đúng một cạnh là cạnh của H?
iii) Không có cạnh nào là cạnh của H?
Giải
a) \(C_{20}^3 = 1140\)
b) i) ba đỉnh liên tiếp của H xác định một tam giác có đúng hai cạnh là cạnh của H . Đó là các tam giác \({A_1}{A_2}{A_3},{A_2}{A_3}{A_4},.....,{A_{20}}{A_1}{A_2}\). Vậy có 20 tam giác như vậy.
ii) Xét một cạnh bất kì chẳng hạn \({A_1}{A_2}\). Bỏ đi hai đỉnh kề với nó là \({A_{20}}\) và \({A_3};16\) đỉnh còn lại \({A_4},...,{A_{19}}\) sẽ cùng với \({A_1}{A_2}\) tạo nên 16 tam giác có đúng một cạnh là cạnh của H . Vậy có 20.16 = 320 tam giác như vậy.
iii) Số tam giác cần tìm là \(1140 - 20 - 320 = 800\).
sachbaitap.com
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục