Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 24 trang 54 Sách bài tập (SBT) Toán 9 tập 2

Bình chọn:
3.2 trên 23 phiếu

Hãy tìm giá trị của m để phương trình có nghiệm kép.

Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm kép:

a) \(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

b) \(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Giải

a) \(m{x^2} - 2\left( {m - 1} \right)x + 2 = 0\)

Phương trình có nghiệm số kép

\( \Leftrightarrow \left\{ {\matrix{
{m \ne 0} \cr
{\Delta = 0} \cr} } \right.\)

\(\eqalign{
& \Delta = {\left[ { - 2\left( {m - 1} \right)} \right]^2} - 4.m.2 \cr
& = 4\left( {{m^2} - 2m + 1} \right) - 8m \cr
& = 4\left( {{m^2} - 4m + 1} \right) \cr
& \Delta = 0 \Rightarrow 4\left( {{m^2} - 4m + 1} \right) = 0 \cr
& \Leftrightarrow {m^2} - 4m + 1 = 0 \cr
& \Delta m = {\left( { - 4} \right)^2} - 4.1.1 = 16 - 4 = 12 > 0 \cr
& \sqrt {\Delta m} = \sqrt {12} = 2\sqrt 3 \cr
& {m_1} = {{4 + 2\sqrt 3 } \over {2.1}} = 2 + \sqrt 3 \cr
& {m_2} = {{4 - 2\sqrt 3 } \over {2.1}} = 2 - \sqrt 3 \cr} \)

Vậy với \(m = 2 + \sqrt 3 \) hoặc \(m = 2 - \sqrt 3 \) thì phương trình đã cho có nghiệm số kép.

b) \(3{x^2} + \left( {m + 1} \right)x + 4 = 0\)

Phương trình có nghiệm số kép \( \Leftrightarrow \Delta  = 0\)

\(\eqalign{
& \Delta = {\left( {m + 1} \right)^2} - 4.3.4 = {m^2} + 2m + 1 - 48 = {m^2} + 2m - 47 \cr
& \Delta = 0 \Rightarrow {m^2} + 2m - 47 = 0 \cr
& \Delta m = {2^2} - 4.1\left( { - 47} \right) = 4 + 188 = 192 > 0 \cr
& \sqrt {\Delta m} = \sqrt {192} = 8\sqrt 3 \cr
& {m_1} = {{ - 2 + 8\sqrt 3 } \over {2.1}} = 4\sqrt 3 - 1 \cr
& {m_2} = {{ - 2 - 8\sqrt 3 } \over {2.1}} = - 1 - 4\sqrt 3 \cr} \)

Vậy với \(m = 4\sqrt 3  - 1\) hoặc \(m =  - 1 - 4\sqrt 3 \) thì phương trình có nghiệm số kép.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Bài viết liên quan