Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Tính sinB, sinC trong mỗi trường hợp sau (làm tròn đến chữ số thập phân thứ tư), biết rằng:
a) AB = 13; BH = 5.
b) BH = 3; CH = 4.
Gợi ý làm bài:
a) Xét tam giác vuông ABH, ta có: \(\cos \widehat B = {{BH} \over {AB}} = {5 \over {13}}\)
Tam giác ABC vuông tại A nên: \(\widehat B + \widehat C = 90^\circ \)
Suy ra: \(\sin \widehat C = c{\rm{os}}\widehat B = {5 \over {13}} = 0,3864.\)
Áp dụng định lí Pi-ta-go, ta có:
\(A{B^2} = A{H^2} + B{H^2} \Rightarrow A{H^2} = A{B^2} - B{H^2} = {13^2} - {5^2} = 144\)
Suy ra: AH = 12
Ta có: \(\sin B = {{AH} \over {AB}} = {{12} \over {13}} \approx 0,9231\)
b) Ta có:
\(BC = BH + HC = 3 + 4 = 7\)
Theo hệ thức liên hệ giữa góc vuông và hình chiếu, ta có:
\(A{B^2} = BH.BC \Rightarrow AB = \sqrt {BH.BC} = \sqrt {3.7} = \sqrt {21} \)
\(\eqalign{
& A{C^2} = CH.BC \cr
& \Rightarrow AC = \sqrt {CH.BC} = \sqrt {4.7} = \sqrt {28} = 2\sqrt 7 \cr} \)
Suy ra: \(\sin \widehat B = {{AC} \over {BC}} = {{2\sqrt 7 } \over 7} \approx 0,7559\)
\(\sin \widehat C = {{AB} \over {BC}} = {{\sqrt {21} } \over 7} \approx 0,6547\)
Sachbaitap.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục