27. Trang 9 Sách bài tập Hình Học 11 nâng cao.
Cho parabol (P) có tiêu điểm F và đường chuẩn d. Với điểm M trên (P) ta kẻ \(MH \bot d\,(H \in d)\) và gọi m là phân giác của góc FMH. Chứng minh rằng m chỉ cắt (P) tại điểm chung duy nhất M. (Đường thẳng m như thế được gọi là tiếp tuyến của (P) tại điểm M).
Giải
Vì M nằm trên parabol (P) nên MF = MH. Do đó m chính là đường trung trực của đoạn thẳng FH. Lấy điểm M’ tùy ý nằm trên m, kẻ \(M'H' \bot d\,\left( {H' \in \,d} \right)\) thì ta có: \(M'F = M'H \ge M'H'.\) Nếu M’ không trùng với M thì M’F > M’H’ nên M’ không nằm trên (P).
Vậy M chỉ cắt (P) tại điểm duy nhất M.
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục