Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.19 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Hãy xác định số thực a để dãy số

Hãy xác định số thực a để dãy số \(({u_n}),\) với \({u_n} = {{a{n^2} + 1} \over {2{n^2} + 3}},\) là:

a) Một dãy số giảm ;

b) Một dãy số tăng .

Giải

Viết lại công thức xác định \({u_n}\) dưới dạng.

\({u_n} = {a \over 2} + {{2 - 3a} \over {2.\left( {2{n^2} + 3} \right)}}\)

Từ đó, ta có

\({u_{n + 1}} - {u_n} = {{2 - 3a} \over 2} \times \left( {{1 \over {2.{{\left( {n + 1} \right)}^2} + 3}} - {1 \over {2{n^2} + 3}}} \right)\,\left( {\forall n \ge 1} \right)\)                     (1)

Dễ thấy

\(\left( {{1 \over {2.{{\left( {n + 1} \right)}^2} + 3}} - {1 \over {2{n^2} + 3}}} \right)\, < 0\,\,\left( {\forall n \ge 1} \right)\)

Vì thế, từ (1) suy ra

a)  \(({u_n})\) là một dãy số giảm \( \Leftrightarrow {{2 - 3a} \over 2} > 0 \Leftrightarrow a < {2 \over 3}\)

b) \(({u_n})\) là một dãy số tăng \( \Leftrightarrow {{2 - 3a} \over 2} < 0 \Leftrightarrow a < {2 \over 3}\)

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan