Trong mặt phẳng tọa độ, các đỉnh của tam giác ABC có tọa độ như sau: A(1 ; 1) ; B(5 ; 1) ; C(7 ; 9)
Hãy tính:
a) Giá trị của \(tg\widehat {BAC}\) (làm tròn đến chữ số thập phân thứ tư);
b) Độ dài của cạnh AC.
Gợi ý làm bài:
a) Vì tam giác ACH vuông tại H nên ta có:
\(tg\widehat {HAC} = {{CH} \over {AH}} = {{9 - 1} \over {7 - 1}} = {8 \over 6} = 1,3333\)
Mà A, B, H thẳng hàng nên suy ra:
\(tg\widehat {BAC} = tg\widehat {HAC} = 1,3333\)
b) Áp dụng định lí Pi-ta-go vào tam giác vuông ACH, ta có:
\(A{C^2} = C{H^2} + A{H^2}\)
Suy ra: \(AC = \sqrt {C{H^2} + A{H^2}} = \sqrt {{8^2} + {6^2}} = \sqrt {100} = 10\)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục