Ba số x , y , z , theo thứ tự đó lập thành một cấp số nhân với công bội \(q \ne 1\); đồng thời, các số x, 2y, 3z theo thứ tự đó lập thành một cấp số cộng với công sai khác 0. Hãy tìm q.
Giải
Nhận thấy \(x \ne 0,\) vì nếu ngược lại thì \(y = z = 0\) và do đó cấp số cộng \(x,2y,3z.\)
Vì \(x,y,z\) là cấp số nhân với công bội q nên
\(y = xq\) và \(z = x{q^2}\) (1)
Vì \(x,2y,3z\) là cấp số cộng nên
\(4y = x + 3z\) (1)
Từ (1) và (2) ta được
\(4xq = x.\left( {1 + 3{q^2}} \right)\)
\( \Leftrightarrow 3{q^2} - 4q + 1 = 0\) (vì \(x \ne 0\))
\(q = {1 \over 3}\) (vì \(q \ne 1\) theo giả thiết)
sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục