Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.7 trang 86 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho số nguyên

Cho số nguyên \(n \ge 2\) và cho số thực \({a_1},{a_2},...,{a_n}\) thuộc khoảng \(\left( {0;1} \right)\). Chứng minh rằng

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_n}} \right) > 1 - {a_1} - {a_2} - ... - {a_n}\)

Giải

Ta sẽ giải bài toán bằng phương pháp quy nạp

Kí hiệu bất đẳng thức cần chứng minh theo yêu cầu của đề bài bởi (1)

Với \(n = 2,\) xét hai số thực túy ý \({a_1},{a_2} \in \left( {0;1} \right)\) ta có

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right) \)

\(= 1 - {a_1} - {a_2} + {a_1}{a_2} > 1 - {a_1} - {a_2}\) (do \({a_1},{a_2} > 0\) )

Như thế, (1) đúng khi \(n = 2\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*\) và \(k \ge 2,\)

Xét \(k + 1\) số thực tùy ý \({a_1},{a_2},...,{a_k},{a_{k + 1}}\) thuộc khoảng \(\left( {0;1} \right)\)

Vì k số \({a_1},{a_2},...,{a_k}\) thuộc khoảng \(\left( {0;1} \right)\) nên theo giả thiết quy nạp ta có

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right) > 1 - {a_1} - {a_2} - ... - {a_k}\)

Từ đó, vì \(1 - {a_{k + 1}} > 0,\) suy ra

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) >\)

\(\left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right)\)                 (2)

Lại có

\(\eqalign{
& \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) \cr
& = 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}} \cr&+ \left( {1 - {a_1} - {a_2} - ... - {a_k}} \right){a_{k + 1}} \cr
& > 1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)

Từ (2) và (3) ta được

\(\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)...\left( {1 - {a_k}} \right)\left( {1 - {a_{k + 1}}} \right) > \)

\(1 - {a_1} - {a_2} - ... - {a_k} - {a_{k + 1}}\)

Như vậy (1) cũng đúng khi \(n = k + 1\)

Từ các chứng minh trên suy ra có điều cần chứng minh theo yêu cầu của để bài.

sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan