Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.73 trang 97 sách bài tập Đại số và Giải tích 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho dãy số

Cho dãy số \(({u_n})\) xác định bởi  \({u_1} = 1\) và \({u_{n + 1}} = \sqrt {u_n^2 + 2} \) với mọi \(n \ge 1.\)

a) Chứng minh rằng dãy số \(({u_n})\), mà \({v_n} = u_n^2\) với mọi \(n \ge 1,\) là một cấp số cộng. Hãy xác định số hạng đầu và công sai của cấp số cộng đó.

b) Hãy xác định số hạng tổng quát của dãy số \(({u_n})\).

c) Tính tổng \(S = u_1^2 + u_2^2 + u_3^2 + .... + u_{1001}^2.\)

Giải

a) Từ hệ thức xác định dãy số \(({u_n})\) suy ra với mọi \(n \ge 1\)

          \(u_{n + 1}^2 = u_n^2 + 2,\) hay \({v_{n + 1}} = {v_n} + 2.\)

Do đó, dãy số \(({v_n})\) là một cấp số cộng với số hạng đầu \({v_1} = u_1^2 = 1\) và công sai \(d = 2.\)

b) Từ định nghĩa dãy số \(({u_n})\) và dãy số \(({v_n})\) dễ dàng suy ra \({u_n} > 0\) và \({v_n} > 0\) với mọi \(n \ge 1.\) Từ đó, ta có \({u_n} = \sqrt {{v_n}} \) với mọi \(n \ge 1.\)

Từ kết quả phần a) suy ra : \({v_n} = 1 + \left( {n - 1} \right).2 = 2n - 1\,\,\,\,\,\,\,\,\left( {\forall n \ge 1} \right).\) Vì thế

                      \({u_n} = \sqrt {2n - 1} \,\,\,\,\,\,\,\,\,\,\,(\forall n \ge 1).\)

c) \(S = u_1^2 + u_2^2 + u_3^2 + .... + u_{1001}^2\)

       \( = {v_1} + {v_2} + {v_3} + ... + {v_{1001}} \)

       \(= {{1001.\left( {2.1 + \left( {1001 - 1} \right).2} \right)} \over 2} = 1002001.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan