Dựng hình vuông ABCD, biết đỉnh A, điểm M thuộc cạnh BC và điểm N thuộc cạnh CD.
Giải
Phân tích: Giả sử hình vuông ABCD dung được thỏa mãn điều kiện bài toán. Ta cần dựng đỉnh C. Đỉnh C thỏa mãn 2 điều kiện:
− \(\widehat {MCN} = 90^\circ \) nên C nằm trên cung chứa góc 90º dựng trên MN.
− Ta có \(\widehat {ACM} = 45^\circ \) (vì hình vuông có đường chéo là phân giác) nên C nằm trên cung chứa góc 45º vẽ trên AM.
Cách dựng: − Dựng cung chứa góc 90º trên đoạn MN.
− Dựng cung chứa góc 45º trên đoạn AM.
Hai cung cắt nhau tại C, nối CM, CN.
Kẻ AB ⊥ CN tại B, AD ⊥ CN tại D.
Ta có tứ giác ABCD là hình vuông cần dựng.
Chứng minh: Thật vậy theo cách dựng ta có: \(\widehat C = 90^\circ ,\widehat B = 90^\circ ,\widehat D = 90^\circ \)
Tứ giác ABCD là hình chữ nhật, có điểm M thuộc BC, điểm N thuộc CD. AC là phân giác của \(\widehat C.\)
Vậy: tứ giác ABCD là hình vuông.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục