Chứng minh rằng nếu \(q > 1\) thì \(\lim {{{n^2}} \over {{q^n}}} = 0\)
Hướng dẫn. Áp dụng bài tập 4.27 c)
Giải
Nếu \(q > 1\) thì \(\sqrt q > 1.\) Từ bài tập 4.27c suy ra \(\lim {n \over {{{\left( {\sqrt q } \right)}^n}}} = 0\)
Vì \({{{n^2}} \over {{q^n}}} = {n \over {{{\left( {\sqrt q } \right)}^n}}}.{n \over {{{\left( {\sqrt q } \right)}^n}}}\) nên \(\lim {{{n^2}} \over {{q^n}}} = 0\)
Nhận xét: Một cách tương tự, có thể chứng minh được rằng nếu \(q > 1\) và k là một số nguyên dương thì
\(\lim {{{n^k}} \over {{q^n}}} = 0\)
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục