Cho phương trình \({x^2} + px - 5 = 0\) có nghiệm là x1, x2. Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau:
a) –x1 và –x2
b) \({1 \over {{x_1}}}\) và \({1 \over {{x_2}}}\)
Giải
Phương trình: \({x^2} + px - 5 = 0\) có hai nghiệm x1 và x2. Theo hệ thức Vi-ét ta có:
\(\eqalign{
& {x_1} + {x_2} = - {p \over 1} = - p \cr
& {x_1}{x_2} = {{ - 5} \over 1} = - 5 \cr} \) (1)
a) Hai số -x1 và –x2 là nghiệm của phương trình:
\(\eqalign{
& \left[ {x - \left( { - {x_1}} \right)} \right]\left[ {x - \left( { - {x_2}} \right)} \right] = 0 \cr
& \Leftrightarrow {x^2} - \left( { - {x_2}x} \right) - \left( { - {x_1}x} \right) + \left( { - {x_1}} \right)\left( { - {x_2}} \right) = 0 \cr
& \Leftrightarrow {x_2} + \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2} = 0(2) \cr} \)
Từ (1) và (2) phương trình phải tìm: \({x^2} - px - 5 = 0\)
b) Hai số \({1 \over {{x_1}}}\) và \({1 \over {{x_2}}}\) là nghiệm của phương trình:
\(\eqalign{
& \left( {x - {1 \over {{x_1}}}} \right)\left( {x - {1 \over {{x_2}}}} \right) = 0 \cr
& \Leftrightarrow {x^2} - {1 \over {{x_2}}}x - {1 \over {{x_1}}}x + {1 \over {{x_1}}}.{1 \over {{x_2}}} = 0 \cr
& \Leftrightarrow {x^2} - \left( {{1 \over {{x_1}}} + {1 \over {{x_2}}}} \right)x + {1 \over {{x_1}{x_2}}} = 0 \cr
& \Leftrightarrow {x^2} - {{{x_1} + {x_2}} \over {{x_1}{x_2}}}x + {1 \over {{x_1}{x_2}}} = 0(3) \cr} \)
Từ (1) và (3) suy ra phương trình phải tìm:
\(\eqalign{
& {x^2} - {{ - p} \over { - 5}}x + {1 \over { - 5}} = 0 \cr
& \Leftrightarrow {x^2} - {p \over 5}x - {1 \over 5} = 0 \cr
& \Leftrightarrow 5{x^2} - px - 1 = 0 \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục