44. Trang 59 Sách Bài tập Hình học 11 Nâng cao
Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Chứng minh rằng tứ giác A’B’C’D’ là hình bình hành khi và chỉ khi mặt phẳng (P) song song với mp(ABCD).
Giải
(h.97)
- Giả sử A’B’C’D’ là hình bình hành. Ta có:
A’B’ // C’D’
A’B’ \( \subset \) (SAB)
C’D’ \( \subset \) (SCD)
Suy ra giao tuyến \(\Delta \) của (SAB) và (SCD) song song với A’B’ và C’D’.
Mặt khác:
\(\left. \matrix{
AB//CD \hfill \cr
AB \subset \left( {SAB} \right) \hfill \cr
CD \subset \left( {SCD} \right) \hfill \cr} \right\} \Rightarrow \Delta //AB//CD\)
Vậy A’B’ // AB \( \Rightarrow \) A’B’ // (ABCD) (1)
Chứng minh tương tự, ta có
A’D’ // AD \( \Rightarrow \) A’D’ //(ABCD) (2)
Từ (1) và (2) suy ra (P) // (ABCD).
- Giả sử (P) // (ABCD).
Khi đó hai mặt phẳng (P) và (ABCD) bị mặt phẳng (SAB) cắt theo hai giao tuyến A’B’ và AB song song
Tương tự, ta có:
C’D’ // CD
B’C’ // BC
A’D’ // AD
Suy ra: A’B’ // C’D’ và B’C’ // A’D’
Vậy tứ giác A’B’C’D’ là hình bình hành.
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục