Chứng tỏ rằng \({{z - 1} \over {z + 1}}\) là số thực khi và chỉ khi z là một số thực khác – 1.
Hướng dẫn làm bài
Hiển nhiên nếu \(z \in R,z \ne - 1\) thì \({{z - 1} \over {z + 1}} \in R\)
Ngược lại, nếu \({{z - 1} \over {z + 1}} = a \in R\) thì \(z - 1 = az + a\) và \(a \ne 1\)
Suy ra \((1 - a)z = a + 1\Rightarrow z = {{a + 1} \over {1 - a}} \in R\) và hiển nhiên \(z \ne - 1\).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục