Cho hình vuông ABCD cạnh y (cm). Điểm E thuộc cạnh AB. Điểm G thuộc tia AD sao cho \(AG = AD + {3 \over 2}EB.\). Dựng hình chữ nhật GAEF. Đặt EB = 2x (cm). Tính x và y để diện tích của hình chữ nhật bằng diện tích hình vuông và ngũ giác ABCFG có chu vi bằng \(100 + 4\sqrt {13} \) (cm)
Giải
Theo giả thiết ta có: EB = 2x (cm)
Điều kiện: y > 2x > 0
AE = AB – EB = y – 2x (cm)
AG = AD + DG \( = y + {3 \over 2}EB = y + {3 \over 2}.2x = y + 3x\) (cm)
Diện tích hình chữ nhật bằng diện tích hình vuông, ta có phương trình:
\(\left( {y - 2x} \right)\left( {y + 3x} \right) = {y^2}\)
Mặt khác theo định lí Pitago ta có:
\(FC = \sqrt {E{B^2} + D{G^2}} = \sqrt {4{x^2} + 9{x^2}} = x\sqrt {13} \) (cm)
Chu vi của ngũ giác ABCFG bằng:
\(\eqalign{
& AB + BC + CF + FG + GA \cr
& = AB + BC + CF + FG + GD + AD \cr
& = y + y + x\sqrt {13} + y - 2x + 3x + y \cr
& = x\left( {1 + \sqrt {13} } \right) + 4y \cr} \)
Chu vi ngũ giác bằng \(100 + 4\sqrt {13} \) (cm), ta có phương trình:
\(x\left( {1 + \sqrt {13} } \right) + 4y = 100 + 4\sqrt {13} \)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ {\matrix{
{\left( {y - 2x} \right)\left( {y + 3x} \right) = {y^2}} \cr
{x\left( {1 + \sqrt {13} } \right) + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{{y^2} + 3xy - 2xy - 6{x^2} = {y^2}} \cr
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{xy - 6{x^2} = 0} \cr
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x\left( {y - 6x} \right) = 0} \cr
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y - 6x = 0} \cr
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr
{\left( {1 + \sqrt {13} } \right)x + 4.6x = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr
{\left( {25 + \sqrt {13} } \right)x = 100 + 4\sqrt {13} } \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr
{x = {{4\left( {25 + \sqrt {13} } \right)} \over {25 + \sqrt {13} }}} \cr
} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr
{x = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 24} \cr
{x = 4} \cr} } \right. \cr} \)
Giá trị x = 4 và y = 24 thỏa mãn điều kiện bài toán.
Vậy x = 4 (cm); y = 24 (cm).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục