Xem thêm: Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Tính góc tạo bởi hai đường thẳng AC’ và A’B.
b) Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. Chứng minh rằng AC’ vuông góc với mp(MNP).
Trả lời
a) Ta có \(C'B' \bot \left( {ABB'A'} \right),B'A \bot A'B\) nên \(A'B \bot AC'\) (định lí ba đường vuông góc).
Vậy góc giữa AC’ và A’B bằng 90°.
b) Ta có
\(\eqalign{ & N{P^2} = N{C^2} + C{{\rm{D}}^2} + D{P^2} \cr & = {{{a^2}} \over 4} + {a^2} + {{{a^2}} \over 4} = {{3{{\rm{a}}^2}} \over 2} \cr} \)
Tương tự ta cũng có \(M{N^2} = M{P^2} = {{3{{\rm{a}}^2}} \over 2}\)
Vậy MNP là tam giác đều.
Mặt khác:
\(\eqalign{ & A{N^2} = A{P^2} = A{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr & C'{N^2} + C'{P^2} = C'{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr} \)
Từ đó \(AC' \bot \left( {MNP} \right)\).
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục