Tìm a để phương trình \(f'\left( x \right) = 0\) có nghiệm, biết rằng
\(f\left( x \right) = a\cos x + 2\sin x - 3x + 1\)
Giải
Với mọi \(x \in R\) ta có
\(f'\left( x \right) = a\sin x + 2\cos x - 3.\)
Để \(f'\left( x \right) = 0\) có nghiệm thì ta phải tìm a sao cho phương trình \(2\cos x - a\sin x = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\) có nghiệm. Ta có
\(\left( 1 \right) \Leftrightarrow {2 \over {\sqrt {{a^2} + 4} }}\cos x - {a \over {\sqrt {{a^2} + 4} }}\sin x = {3 \over {\sqrt {{a^2} + 4} }}\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Vì \({\left( {{2 \over {\sqrt {{a^2} + 4} }}} \right)^2} + {\left( {{a \over {\sqrt {{a^2} + 4} }}} \right)^2} = 1\) nên có số \(\alpha \) sao cho\(\left\{ \matrix{\cos \alpha = {2 \over {\sqrt {{a^2} + 4} }} \hfill \cr\sin \alpha = {a \over {\sqrt {{a^2} + 4} }} \hfill \cr} \right.\)
Thế vào (2), ta được : \(\cos x\cos \alpha - \sin x\sin \alpha = {3 \over {\sqrt {{a^2} + 4} }}\)
\( \Leftrightarrow \cos \left( {x + \alpha } \right) = {3 \over {\sqrt {{a^2} + 4} \,}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right)\)
Phương trình (3) có nghiệm khi và chỉ khi
\( - 1 \le {3 \over {\sqrt {{a^2} + 4} }} \le 1 \Leftrightarrow 3 \le \sqrt {{a^2} + 4} \Leftrightarrow {a^2} + 4 \ge 9 \)
\(\Leftrightarrow {a^2} \ge 5 \Leftrightarrow \left| a \right| \ge \sqrt {5} \)
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục