Cho đường tròn (O; 3cm) và điểm A có AO = 5cm. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Tính độ dài OH.
b) Qua điểm M bất kì thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn, cắt AB và AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Giải:
a) Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau).
Suy ra ∆ABC cân tại A.
AO là tia phân giác của góc BAC (tính chất
hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác ABC (tính chất
tam giác cân).
Ta có: AO vuông góc với BC tại H
Lại có: AB ⊥ OB (tính chất tiếp tuyến)
Tam giác ABO vuông tại B có BH ⊥ AO
Theo hệ thức lượng trong tam giác vuông, ta có:
\(O{B^2} = OH.OA \Rightarrow OH = {{O{B^2}} \over {OA}} = {{{3^2}} \over 5} = 1,8\) (cm)
b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABO, ta có:
\(A{O^2} = A{B^2} + B{O^2}\)
Suy ra: \(A{B^2} = A{O^2} - B{O^2} = {5^2} - {3^2} = 16\)
AB = 4 (cm)
Theo tính chất hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB
= 2.4 = 8 (cm).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục