Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:
S = p.r
Giải:
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC.
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\(= {1 \over 2}.AB.r + {1 \over 2}.AC.r + {1 \over 2}.BC.r\)
\(= {1 \over 2}(AB + AC + BC).r\)
Mà AB + AC + BC = 2p
Nên \({S_{ABC}} = {1 \over 2}.2p.r = p.r\)
Loigiaihay.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục