Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:
S = p.r
Giải:
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC.
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\(= {1 \over 2}.AB.r + {1 \over 2}.AC.r + {1 \over 2}.BC.r\)
\(= {1 \over 2}(AB + AC + BC).r\)
Mà AB + AC + BC = 2p
Nên \({S_{ABC}} = {1 \over 2}.2p.r = p.r\)
Loigiaihay.com
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục