Chứng minh rằng nếu tam giác ABC có chu vi 2p,bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức:
S = p.r
Giải:
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC.
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có: \({S_{ABC}} = {S_{OAB}} + {S_{OAC}} + {S_{OBC}}\)
\(= {1 \over 2}.AB.r + {1 \over 2}.AC.r + {1 \over 2}.BC.r\)
\(= {1 \over 2}(AB + AC + BC).r\)
Mà AB + AC + BC = 2p
Nên \({S_{ABC}} = {1 \over 2}.2p.r = p.r\)
Loigiaihay.com
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com
>> Chi tiết khoá học xem: TẠI ĐÂY
Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục