Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:
a) \(AE = AF = {{a + b + c} \over 2}\)
b) \(BE = {{a + b - c} \over 2};\)
c) \(CF = {{a + c - b} \over 2}\)
Giải:
a) Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.
Theo tính chất hai tiếp tuyến cắt nhau ta có:
BE = BD; CD = CF
AE = AB + BE
AF = AC + CF
Suy ra: AE + AF = AB + BE + AC + CF
= AB + AC + (BD + DC)
= AB + AC + BC = c + b + a
Mà AE = AF (tính chất hai tiếp tuyến cắt nhau)
Suy ra: \({\rm{AE = AF = }}{{a + b + c} \over 2}\)
b) Ta có: \(BE = AE – AB = {{a + b + c} \over 2} - c = {{a + b - c} \over 2}\)
c) Ta có: \(CF = AF – AC = {{a + b + c} \over 2} - b = {{a + c - b} \over 2}.\)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục