Cho hàm số
\(f\left( x \right) = \sqrt {{{\left| x \right|}^3}} \)
Tính f' (0) nếu có
Giải
Theo công thức tính đạo hàm của hàm số tại điểm 0
\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over {x - 0}}\)
Ta được \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} {{\sqrt {{{\left| x \right|}^3}} - 0} \over {x - 0}} = \mathop {\lim }\limits_{x \to 0} {{\sqrt {{{\left| x \right|}^3}} } \over x}\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} {{\sqrt {{{\left| x \right|}^3}} } \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{x\sqrt x } \over x} = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x = 0\)
Và \(\mathop {\lim }\limits_{x \to {0^ - }} {{\sqrt {{{\left| x \right|}^3}} } \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{ - x\sqrt { - x} } \over x} = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - \sqrt { - x} } \right) = 0\)
Nên \(f'\left( 0 \right) = 0\)
sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục