Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.35 trang 201 SBT Đại số 10 Nâng cao

Bình chọn:
3.8 trên 5 phiếu

Giải bài tập Câu 6.35 trang 201 SBT Đại số 10 Nâng cao

Tính

a) \(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} +  \ldots  + \cos \dfrac{{8\pi }}{9};\)

b) \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}}\);

c) \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9}\);

d) \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} +  \ldots  + \cos \dfrac{{9\pi }}{5};\)

e) \(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} +  \ldots  + \sin \dfrac{{9\pi }}{5}\)

Giải:

a)

\(\cos \dfrac{\pi }{9} + \cos \dfrac{{2\pi }}{9} +  \ldots  + \cos \dfrac{{8\pi }}{9} = 0\), do \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha .\)

b) Do \(\sin \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{6}\) nên \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} = 1.\)  

Do \(\sin \dfrac{{7\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{9}} \right) = \cos \dfrac{\pi }{9}\) nên \({\sin ^2}\dfrac{{7\pi }}{{18}} + {\sin ^2}\dfrac{\pi }{9} = 1\).

Do \(\sin \dfrac{{5\pi }}{{18}} = \sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) = \cos \dfrac{{2\pi }}{9}\) nên \({\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} = 1\).

Vậy \({\sin ^2}\dfrac{\pi }{3} + {\sin ^2}\dfrac{\pi }{6} + {\sin ^2}\dfrac{\pi }{9} + {\sin ^2}\dfrac{{2\pi }}{9} + {\sin ^2}\dfrac{{5\pi }}{{18}} + {\sin ^2}\dfrac{{7\pi }}{{18}} = 3\)

c) Do \(\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) =  - \sin \dfrac{\pi }{3}\), nên \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} = 1\).

Do \(\cos \dfrac{{11\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{9}} \right) =  - \sin \dfrac{\pi }{9}\), nên \({\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} = 1\)

Do \(\cos \dfrac{{13\pi }}{{18}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{2\pi }}{9}} \right) =  - \sin \dfrac{{2\pi }}{9}\), nên \({\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 1\)

Vậy \({\cos ^2}\dfrac{\pi }{3} + {\cos ^2}\dfrac{{5\pi }}{6} + {\cos ^2}\dfrac{\pi }{9} + {\cos ^2}\dfrac{{11\pi }}{{18}} + {\cos ^2}\dfrac{{13\pi }}{{18}} + {\cos ^2}\dfrac{{2\pi }}{9} = 3\)

d) Do \(\cos \dfrac{{6\pi }}{5} = \cos \left( {\pi  + \dfrac{\pi }{5}} \right) =  - \cos \dfrac{\pi }{5};\) \(\cos \dfrac{{7\pi }}{5} =  - \cos \dfrac{{2\pi }}{5};\cos \dfrac{{8\pi }}{5} =  - \cos \dfrac{{3\pi }}{5};\) \(\cos \dfrac{{9\pi }}{5} =  - \cos \dfrac{{4\pi }}{5};\cos \pi  =  - 1\) nên \(\cos \dfrac{\pi }{5} + \cos \dfrac{{2\pi }}{5} +  \ldots  + \cos \dfrac{{9\pi }}{5} =  - 1\)

e) Tương tự đối với sin, nhưng ở đây \(\sin \pi  = 0\), ta có :

\(\sin \dfrac{\pi }{5} + \sin \dfrac{{2\pi }}{5} +  \ldots  + \sin \dfrac{{9\pi }}{5} = 0.\)

(Chú ý: Ta cũng có thể xét thập giác đều có các đỉnh là \({A_k}\) là các điểm trên đường tròn lượng giác, xác định bởi các số \(\dfrac{{k\pi }}{5}\) (k = 1; 2; 3; 4; ....; 9; 10) và nhận xét rằng \(\overrightarrow {O{A_1}}  + \overrightarrow {O{A_2}}  +  \ldots \overrightarrow {O{A_{10}}}  = \overrightarrow 0 \))

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan