Tính diên tích của hình bình hành có hai cạnh 12cm và 15cm, góc tạo bởi hai cạnh ấy bằng 100\(^\circ \).
Gợi ý làm bài
Giả sử hình bình hành MNPQ có MN = 12cm, MQ = 15cm, \(\widehat {NMQ} = 110^\circ \)
Ta có: \(\widehat {NMQ} + \widehat {MNP} = 180^\circ \) (hai góc trong cùng phía)
Suy ra: \(\widehat {MNP} = 180^\circ - \widehat {NMQ}\)
\( = 180^\circ - 110^\circ = 70^\circ \)
Kẻ \(MR \bot NP\)
Trong tam giác vuông MNR, ta có:
\(\eqalign{
& MR = MN.\sin \widehat {MNP} \cr
& = 12.\sin 70^\circ \approx 11,276\,(cm) \cr} \)
Vậy \({S_{MNPQ}} = MR.MQ \approx 11,276.15 = 169,14\) (cm2).
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục