Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.61 trang 207 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 6.61 trang 207 SBT Đại số 10 Nâng cao

Giả sử phương trình bậc hai \(a{x^2} + bx + c = 0\left( {ac \ne 0} \right)\) có hai nghiệm là \(\tan \alpha \) và \(\tan \beta \). Chứng minh rằng:

\(a.{\sin ^2}\left( {\alpha  + \beta } \right) + b.\sin \left( {\alpha  + \beta } \right)\cos \left( {\alpha  + \beta } \right) + c.{\cos ^2}\left( {\alpha  + \beta } \right) = c\).

Giải:

Ta có \(\tan \alpha  + \tan \beta  =  - \dfrac{b}{a},\tan \alpha \tan \beta  = \dfrac{c}{a}.\)

• Nếu \(\cos \left( {\alpha  + \beta } \right) \ne 0\) thì vế trái của đẳng thức đã cho là

\(\begin{array}{l}a{\sin ^2}\left( {\alpha  + \beta } \right) + b\sin \left( {\alpha  + \beta } \right)\cos \left( {\alpha  + \beta } \right) + c{\cos ^2}\left( {\alpha  + \beta } \right)\\ = {\cos ^2}\left( {\alpha  + \beta } \right)\left[ {a{{\tan }^2}\left( {\alpha  + \beta } \right) + b\tan \left( {\alpha  + \beta } \right) + c} \right]\\ = \dfrac{1}{{1 + {{\tan }^2}\left( {\alpha  + \beta } \right)}}\left[ {a{{\tan }^2}\left( {\alpha  + \beta } \right) + b\tan \left( {\alpha  + \beta } \right) + c} \right]\,\,\,\,\,\,\,\,\left( * \right)\end{array}\)

Nhưng ta có \(\tan \left( {\alpha  + \beta } \right) = \dfrac{{\tan \alpha  + \tan \beta }}{{1 - \tan \alpha \tan \beta }} = \dfrac{b}{{c - a}}\)

(để ý rằng \(\cos \left( {\alpha  + \beta } \right) \ne 0 \Leftrightarrow c \ne a\)) nên thay giá trị của \(\tan \left( {\alpha  + \beta } \right)\) vào biểu thức (*), sau khi đơn giản ta được biểu thức đó bằng c.

• Nếu \(\cos \left( {\alpha  + \beta } \right) = 0\left( { \Leftrightarrow \tan \alpha \tan \beta  = 1 \Leftrightarrow a = c} \right)\) thì \({\sin ^2}\left( {\alpha  + \beta } \right) = 1\), nên vế trái của đẳng thức đã cho bằng \(a{\sin ^2}\left( {\alpha  + \beta } \right) = a = c.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan