Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.65 trang 207 SBT Đại số 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 6.65 trang 207 SBT Đại số 10 Nâng cao

a) Chứng minh \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} =  - \dfrac{1}{8}\) bằng cách nhân cả hai vế với \(\sin \dfrac{{2\pi }}{9}.\)

b) Chứng minh rằng\(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3} = \cos \dfrac{{5\pi }}{9},\) 

Từ đó suy ra \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0\) .

c) Từ b) suy ra rằng \({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}\).

d) Từ b và c) suy ra rằng:

\(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9} =  - \dfrac{3}{4}\) .

e) Từ a), b) và d) suy ra rằng

\(\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right) = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8},\)

từ đó ta có \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}.\)

Suy ra

• \(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)

• \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)

f) Từ e) suy ra rằng

\(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{9}{{256}}.\)

(Chú ý. Người ta chứng minh được rằng không thể dùng thước và compa để dựng đa giác đều chín cạnh nội tiếp trong một đường tròn cho trước.)

Giải:

a) Ta có:

\(\begin{array}{l}\sin \dfrac{{2\pi }}{9}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{2}\sin \dfrac{{4\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{4}\sin \dfrac{{8\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{8}\sin \dfrac{{16\pi }}{9}\\ = \dfrac{1}{8}\sin \left( {2\pi  - \dfrac{{2\pi }}{9}} \right)\\ =  - \dfrac{1}{8}\sin \dfrac{{2\pi }}{9}\end{array}\)

Từ đó: \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} =  - \dfrac{1}{8}.\)

b) Ta có

\(\begin{array}{l}\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3}\\ = \cos \dfrac{{5\pi }}{9} = \cos \left( {\pi  - \dfrac{{4\pi }}{9}} \right)\\ =  - \cos \dfrac{{4\pi }}{9}\end{array}\)

từ đó \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0.\)

c) Do

 \(\begin{array}{l}\cos \dfrac{{2\pi }}{9} = 2{\cos ^2}\dfrac{\pi }{9} - 1 = 2{\cos ^2}\dfrac{{8\pi }}{9} - 1,\\cos\dfrac{{4\pi }}{9} = 2{\cos ^2}\dfrac{{2\pi }}{9} - 1\\\cos \dfrac{{8\pi }}{9} = 2{\cos ^2}\dfrac{{4\pi }}{9} - 1,\end{array}\)

nên từ b) suy ra

\({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}.\)

d) Với mọi số A, B, C ta có:

\(AB + BC + CA = \dfrac{1}{2}\left[ {{{\left( {A + B + C} \right)}^2} - {A^2} - {B^2} - {C^2}} \right]\) nên

\(\begin{array}{l}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}\\ = \dfrac{1}{2}\left[ {{{\left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right)}^2} - \left( {{{\cos }^2}\dfrac{{2\pi }}{9} + {{\cos }^2}\dfrac{{4\pi }}{9} + {{\cos }^2}\dfrac{{8\pi }}{9}} \right)} \right]\\ =  - \dfrac{1}{2}.\dfrac{3}{2} =  - \dfrac{3}{4}.\end{array}\)

e) Ta có

\(\begin{array}{l}\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right)\\ = {X^3} - \left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right){X^2}\\ + \left( {\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}} \right)X\\ - \cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8}.\end{array}\)

Từ đó \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}\), tức là

\(2{\sin ^2}\dfrac{\pi }{9}.2{\sin ^2}\dfrac{{2\pi }}{9}.2{\sin ^2}\dfrac{{4\pi }}{9} = \dfrac{3}{8}\),

suy ra

\(\sin \dfrac{\pi }{9}.\sin \dfrac{{2\pi }}{9}.\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}\)

Đẳng thức này lại cho ta \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)

f) Từ e) ta suy ra:

\(\begin{array}{l}\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9}\\ = \dfrac{{\sqrt 3 }}{8}.\dfrac{{\sqrt 3 }}{8}\sin \dfrac{\pi }{3}\sin \dfrac{{2\pi }}{3} = \dfrac{9}{{256}}.\end{array}\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan