Tìm giá trị bé nhất của biểu thức \({\sin ^6}\alpha + {\cos ^6}\alpha .\)
Giải:
\(\begin{array}{l}{\sin ^6}\alpha + {\cos ^6}\alpha \\ = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^3} - 3{\sin ^2}\alpha {\cos ^2}\alpha \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\\ = 1 - 3{\sin ^2}\alpha {\cos ^2}\alpha \\ = 1 - \dfrac{3}{4}{\sin ^2}2\alpha \end{array}\)
Vậy biểu thức đã cho lấy giá trị nhỏ nhất là \(\dfrac{1}{4}\) khi \({\sin ^2}2\alpha = 1\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục