Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 69 trang 168 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
3.5 trên 8 phiếu

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B, trong đó O’ nằm trên đường tròn (O). Kẻ đường kính O’OC của đường tròn (O).

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B, trong đó O’ nằm trên đường tròn (O). Kẻ đường kính O’OC của đường tròn (O).

a)      Chứng minh rằng CA, CB là các tiếp tuyến của đường tròn (O’)

b)      Đường vuông góc với AO’ tại O’ cắt CB ở I. Đường vuông góc với AC  tại C cắt đường thẳng O’B ở K. Chứng minh rằng ba điểm O, I, K thẳng hàng.

Giải:

a) Tam giác AO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên \(\widehat {O'AC} = 90^\circ \)

Suy ra: CA ⊥ O’A tại điểm A

Vậy CA là tiếp tuyến của đường tròn (O’)

Tam giác BO’C nội tiếp trong đường tròn (O) có O’C là đường kính nên \(\widehat {O'BC} = 90^\circ \)

Suy ra: CB ⊥ O’B tại điểm B

Vậy CB là tiếp tuyến đường tròn (O’)

b) Trong đường tròn (O’) ta có AC và BC là hai tiếp tuyến cắt nhau tại C.

Suy ra: \(\widehat {ACO'} = \widehat {BCO'}\) (tính chất hai tiếp tuyến cắt nhau)

Mà      O’I ⊥ O’A (gt)

           CA ⊥ O’A (chứng minh trên)

Suy ra: O’I // CA \( \Rightarrow \widehat {ACO'} = \widehat {CO'I}\) (hai góc so le trong)

Suy ra: \(\widehat {BCO'} = \widehat {CO'I}\)

Hay tam giác CIO’ cân tại I ⇒ IC = IO’

Khi đó I nằm trên đường trung trực của O’C

Lại có: \(\widehat {AO'C} = \widehat {BO'C}\) (tính chất hai tiếp tuyến cắt nhau)

            KC ⊥ CA (gt)

            O’A ⊥ AC (chứng minh trên)

Suy ra: KC // O’A \(\Rightarrow \widehat {AO'C} = \widehat {O'CK}\) (hai góc so le trong)

Suy ra: \(\widehat {O'CK} = \widehat {KO'C}\)

Hay tam giác CKO’ cân tại K ⇒ KC = KO’

Khi đó K nằm trên đường trung trực của O’C

Mặt khác: OC = OO’ (= R)

Suy ra O, I, K nằm trên đường trung trực của O’C.

Vậy O, I, K thẳng hàng.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan