Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 72 trang 128 Sách bài tập Hình học 11 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Câu 72 trang 128 Sách bài tập Hình học 11 Nâng cao

Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy các điểm \({A_1},{B_1},{C_1}\) lần lượt thuộc các cạnh bên AA’, BB’, CC’ sao cho \({{A{A_1}} \over {AA'}} = {{B'{B_1}} \over {BB'}} = {{C'{C_1}} \over {CC'}} = {3 \over 4}\). Trên các đoạn thẳng CA1 và A’B1 lần lượt lấy các điểm I, J sao cho IJ // B’C1. Tính tỉ số \({{IJ} \over {B'{C_1}}}\) .

Trả lời

 

Đặt \(\overrightarrow {AA'}  = \overrightarrow a ,\overrightarrow {AB}  = \overrightarrow b ,\overrightarrow {AC}  = \overrightarrow c \). Theo giả thiết ta có:

\(\overrightarrow {A{A_1}}  = {3 \over 4}\overrightarrow a ,\overrightarrow {B'{B_1}}  =  - {3 \over 4}\overrightarrow a ,\overrightarrow {C'{C_1}}  =  - {3 \over 4}\overrightarrow a .\)

Ta có:

\(\eqalign{  & \overrightarrow {C{A_1}}  = \overrightarrow {CA}  + \overrightarrow {A{A_1}}   \cr  &  = {3 \over 4}\overrightarrow a  - \overrightarrow c ;  \cr  & \overrightarrow {A'{B_1}}  = \overrightarrow {A'B'}  + \overrightarrow {B'{B_1}}   \cr  &  =  - {3 \over 4}\overrightarrow a  + \overrightarrow b ;  \cr  & \overrightarrow {B'{C_1}}  = \overrightarrow {B'A'}  + \overrightarrow {A'C'}  + \overrightarrow {C'{C_1}}   \cr  &  =  - {3 \over 4}\overrightarrow a  - \overrightarrow b  + \overrightarrow c  \cr} \)

Vì I thuộc CA1 nên \(\overrightarrow {CI}  = t\overrightarrow {C{A_1}}  = {3 \over 4}t\overrightarrow a  - t\overrightarrow c .\)

Do J thuộc A’B1 nên \(\overrightarrow {A'J}  = m\overrightarrow {A'{B_1}}  =  - {3 \over 4}m\overrightarrow a  + m\overrightarrow b \) .

Mặt khác

\(\eqalign{  & \overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CA'}  + \overrightarrow {A'J}   \cr  &  =  - {3 \over 4}t\overrightarrow a  + t\overrightarrow c  + \overrightarrow a  - \overrightarrow c  - {3 \over 4}m\overrightarrow a  + m\overrightarrow b   \cr  &  = \left( {1 - {3 \over 4}t - {3 \over 4}m} \right)\overrightarrow a  + m\overrightarrow b  + \left( {t - 1} \right)\overrightarrow c  \cr} \)

Ta có:

\(\eqalign{  & IJ//B'{C_1} \Leftrightarrow \overrightarrow {IJ}  = k\overrightarrow {B'{C_1}}   \cr  &  \Leftrightarrow \left\{ \matrix{  1 - {3 \over 4}t - {3 \over 4}m =  - {3 \over 4}k \hfill \cr  m =  - k \hfill \cr  t - 1 = k \hfill \cr}  \right. \cr} \)

Suy ra

\(\eqalign{  & 1 - {3 \over 4}\left( {k + 1} \right) + {3 \over 4}k =  - {3 \over 4}k  \cr  &  \Leftrightarrow {1 \over 4} + {3 \over 4}k = 0 \Leftrightarrow k =  - {1 \over 3}  \cr  &  \Rightarrow t = {2 \over 3},m = {1 \over 3}. \cr} \)

Vậy điểm I thuộc A1C được xác định bởi \(\overrightarrow {CI}  = {2 \over 3}\overrightarrow {C{A_1}} \) và J thuộc A’B1 được xác định \(\overrightarrow {A'J}  = {1 \over 3}\overrightarrow {A'{B_1}} \).

Khi đó, ta có \({{IJ} \over {B'{C_1}}} = {1 \over 3}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan