Điểm hạ cánh của một máy bay trực thăng ở giữa hai người quan sát A và B. Biết khoảng cách giữa hai người này là 300m, góc “nâng” để nhìn thấy máy bay tại vị trí A là \(40^\circ \) và tại vị trí B là \(30^\circ \) (h.34). Hãy tìm độ cao của máy bay.
Gợi ý làm bài
Gọi C là vị trí của máy bay.
Kẻ \(CH \bot AB\)
Trong tam giác vuông ACH, ta có:
\(AH = CH.\cot g\widehat A\,(1)\)
Trong tam giác vuông BCH, ta có:
\(BH = CH.\cot g\widehat B\,(2)\)
Từ (1) và (2) suy ra:
\((AH + BH) = CH.\cot g\widehat A + CH.\cot g\widehat B\)
Suy ra:
\(\eqalign{
& CH = {{AB} \over {\cot g\widehat A + \cot g\widehat B}} \cr
& = {{AB} \over {\cot g40^\circ + \cot g30^\circ }} \approx 102,61\,(m) \cr} \)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục