Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh:
a) Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.
b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.
Gợi ý làm bài
Gọi a, b, c lần lượt là ba kích thước của hình hộp chữ nhật.
Ta có: \(a > 0,b > 0,c > 0\) suy ra: \(\sqrt a > 0,\sqrt b > 0,\sqrt c > 0\)
Đặt \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \)
Ta có:
\(\eqalign{
& x + y + z > 0,{\left( {x - y} \right)^2} \ge 0, \cr
& {\left( {y - z} \right)^2} \ge 0,{\left( {z - x} \right)^2} \ge 0 \cr} \)
Suy ra: \(\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \ge 0\)
\( \Leftrightarrow {1 \over 2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \ge 0\)
\( \Leftrightarrow {1 \over 2}(x + y + z)\left[ {({x^2} - 2xy + {y^2})({y^2} - 2yz + {z^2})({z^2} - 2zx + {x^2})} \right] \ge 0\)
\( \Leftrightarrow {1 \over 2}(x + y + z)(2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx) \ge 0\)
\( \Leftrightarrow \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right) \ge 0\)
\( \Leftrightarrow {x^3} + x{y^2} + x{z^2} - {x^2}y - xyz - {x^2}z\)
\( + {x^2}y + {y^3} + y{z^2} - x{y^2} - {y^2}z - xyz\)
\( + {x^2}z + {y^2}z + {z^3} - xyz - y{z^2} - x{z^2} \ge 0\)
\(\eqalign{
& \Leftrightarrow {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr
& \Leftrightarrow {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr} \)
\(\eqalign{
& \Leftrightarrow {x^3} + {y^3} + {z^3} \ge 3xyz \cr
& \Leftrightarrow {{{x^3} + {y^3} + {z^3}} \over 3} \ge xyz \cr} \)
Thay \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \), ta có:
\(\eqalign{
& {{{{(\root 3 \of a )}^3} + {{(\root 3 \of b )}^3} + {{(\root 3 \of c )}^3}} \over 3} \ge \root 3 \of a .\root 3 \of b .\root 3 \of c \cr
& \Leftrightarrow {{a + b + c} \over 3} \ge \root 3 \of {abc} \cr} \)
Các hình hộp chữ nhật có cùng tổng ba kích thích thì \({{a + b + c} \over 3}\) không đổi.
Vì \({{a + b + c} \over 3} \ge \root 3 \of {abc} \) và \({{a + b + c} \over 3}\) không đổi nên \(\root 3 \of {abc} \) đạt giá trị lớn nhất bằng \({{a + b + c} \over 3}\) khi a = b = c.
Vậy trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục