Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 95 trang 20 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
4.7 trên 6 phiếu

Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh

Áp dụng bất đẳng thức Cô-si cho ba số không âm, chứng minh:

a) Trong các hình hộp chữ nhật có cùng tổng ba kích thước thì hình lập phương có thể tích lớn nhất.

b) Trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.

Gợi ý làm bài

Gọi a, b, c lần lượt là ba kích thước của hình hộp chữ nhật.

Ta có: \(a > 0,b > 0,c > 0\) suy ra: \(\sqrt a  > 0,\sqrt b  > 0,\sqrt c  > 0\)

Đặt \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \)

Ta có: 

\(\eqalign{
& x + y + z > 0,{\left( {x - y} \right)^2} \ge 0, \cr
& {\left( {y - z} \right)^2} \ge 0,{\left( {z - x} \right)^2} \ge 0 \cr} \)

Suy ra: \(\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \ge 0\)

\( \Leftrightarrow {1 \over 2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \ge 0\)

\( \Leftrightarrow {1 \over 2}(x + y + z)\left[ {({x^2} - 2xy + {y^2})({y^2} - 2yz + {z^2})({z^2} - 2zx + {x^2})} \right] \ge 0\)

\( \Leftrightarrow {1 \over 2}(x + y + z)(2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx) \ge 0\)

\( \Leftrightarrow \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right) \ge 0\)

\( \Leftrightarrow {x^3} + x{y^2} + x{z^2} - {x^2}y - xyz - {x^2}z\)

           \( + {x^2}y + {y^3} + y{z^2} - x{y^2} - {y^2}z - xyz\)

           \( + {x^2}z + {y^2}z + {z^3} - xyz - y{z^2} - x{z^2} \ge 0\)

\(\eqalign{
& \Leftrightarrow {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr
& \Leftrightarrow {x^3} + {y^3} + {z^3} - 3xyz \ge 0 \cr} \)

\(\eqalign{
& \Leftrightarrow {x^3} + {y^3} + {z^3} \ge 3xyz \cr
& \Leftrightarrow {{{x^3} + {y^3} + {z^3}} \over 3} \ge xyz \cr} \)

Thay \(x = \root 3 \of a ,y = \root 3 \of b ,z = \root 3 \of c \), ta có:

\(\eqalign{
& {{{{(\root 3 \of a )}^3} + {{(\root 3 \of b )}^3} + {{(\root 3 \of c )}^3}} \over 3} \ge \root 3 \of a .\root 3 \of b .\root 3 \of c \cr
& \Leftrightarrow {{a + b + c} \over 3} \ge \root 3 \of {abc} \cr} \)

Các hình hộp chữ nhật có cùng tổng ba kích thích thì \({{a + b + c} \over 3}\) không đổi.

Vì \({{a + b + c} \over 3} \ge \root 3 \of {abc} \) và \({{a + b + c} \over 3}\) không đổi nên \(\root 3 \of {abc} \) đạt giá trị lớn nhất bằng \({{a + b + c} \over 3}\) khi a = b = c.

Vậy trong các hình hộp chữ nhật có cùng thể tích thì hình lập phương có tổng ba kích thước bé nhất.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan