Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 98 trang 21 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
4.2 trên 13 phiếu

Chứng minh các đẳng thức

Chứng minh các đẳng thức:

a) \(\sqrt {2 + \sqrt 3 }  + \sqrt {2 - \sqrt 3 }  = \sqrt 6 \)

b) \(\sqrt {{4 \over {{{\left( {2 - \sqrt 5 } \right)}^2}}}}  - \sqrt {{4 \over {{{\left( {2 + \sqrt 5 } \right)}^2}}}}  = 8.\)

Gợi ý làm bài

a) Ta có: \(4 > 3 \Rightarrow \sqrt 4  > \sqrt  3  \Rightarrow 2 > \sqrt 3  > 0\)

 Suy ra: \(\sqrt {2 + \sqrt 3 }  + \sqrt {2 - \sqrt 3 }  > 0\)

Ta có: 

\({\left( {\sqrt {2 + \sqrt 3 }  + \sqrt {2 - \sqrt 3 } } \right)^2} = 2 + \sqrt 3  + 2\sqrt {2 + \sqrt 3 } .\sqrt {2 - \sqrt 3 }  + 2 - \sqrt 3 \)

\( = 4 + 2\sqrt {4 - 3}  = 4 + 2\sqrt 1  = 4 + 2 = 6\)

\({\left( {\sqrt 6 } \right)^2} = 6\)

Vì \({\left( {\sqrt {2 + \sqrt 3 }  + \sqrt {2 - \sqrt 3 } } \right)^2} = {\left( {\sqrt 6 } \right)^2}\) nên \(\sqrt {2 + \sqrt 3 }  + \sqrt {2 - \sqrt 3 }  = \sqrt 6 \)

b) Ta có:

\(\sqrt {{4 \over {{{\left( {2 - \sqrt 5 } \right)}^2}}}}  - \sqrt {{4 \over {{{\left( {2 + \sqrt 5 } \right)}^2}}}}  = {{\sqrt 4 } \over {\sqrt {{{\left( {2 - \sqrt 5 } \right)}^2}} }} - {{\sqrt 4 } \over {\sqrt {{{\left( {2 + \sqrt 5 } \right)}^2}} }}\)

\( = {2 \over {\left| {2 - \sqrt 5 } \right|}} - {2 \over {\left| {2 + \sqrt 5 } \right|}} = {2 \over {\sqrt 5  - 2}} - {2 \over {\sqrt 5  + 2}}\)

\( = {{2\left( {\sqrt 5  + 2} \right) - 2\left( {\sqrt 5  - 2} \right)} \over {\left( {\sqrt 5  + 2} \right)\left( {\sqrt 5  - 2} \right)}} = {{2\sqrt 5  + 4 - 2\sqrt {5} + 4 } \over {5 - 4}} = 8\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan