Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 101 trang 22 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.9 trên 17 phiếu

Tìm điều kiện xác định và rút gọn biểu thức

a) Chứng minh:

\(x - 4\sqrt {x - 4}  = {\left( {\sqrt {x - 4}  - 2} \right)^2};\)

b) Tìm điều kiện xác định và rút gọn biểu thức:

\(\sqrt {x + 4\sqrt {x - 4} }  + \sqrt {x - 4\sqrt {x - 4} } .\)

Gợi ý làm bài

a) Ta có:

\(VT=x - 4\sqrt {x - 4} \)

\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4}  + 4\)

\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4}  + {2^2} \)

\(= {\left( {\sqrt {x - 4}  - 2} \right)^2}=VP\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) A xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4}  \ge 0\)

\(x - 4 \ge 0 \Leftrightarrow x \ge 4\)

\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)

Ta có:

\(A = \sqrt {x + 4\sqrt {x - 4} }  + \sqrt {x - 4\sqrt {x - 4} } \)

\( = \sqrt {{{\left( {\sqrt {x - 4}  + 2} \right)}^2}}  + \sqrt {{{\left( {\sqrt {x - 4}  - 2} \right)}^2}} \)

\( = \left| {\sqrt {x - 4}  + 2} \right| + \left| {\sqrt {x - 4}  - 2} \right|\)

\( = \sqrt {x - 4}  + 2 + \left| {\sqrt {x - 4}  - 2} \right|\)

- Nếu 

\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)

thì: \(\left| {\sqrt {x - 4}  - 2} \right| = \sqrt {x - 4}  - 2\)

Ta có: \(A = \sqrt {x - 4}  + 2 + \sqrt {x - 4}  - 2 = 2\sqrt {x - 4} \)

- Nếu:

\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)

thì \(\left| {\sqrt {x - 4}  - 2} \right| = 2 - \sqrt {x - 4} \)

Ta có: \(A = \sqrt {x - 4}  + 2 + 2 - \sqrt {x - 4}  = 4\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan