Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 102 trang 22 Sách Bài Tập (SBT) Toán 9 Tập 1

Bình chọn:
3.9 trên 16 phiếu

Tìm điều kiện xác định của các biểu thức sau

Tìm điều kiện xác định của các biểu thức sau:

\(A = \sqrt x  + \sqrt {x + 1} \);

\(B = \sqrt {x + 4}  + \sqrt {x - 1} .\)

a) Chứng minh rằng \(A \ge 1\) và \(B \ge \sqrt 5 \);

b) Tìm x, biết:

\(\sqrt x  = \sqrt {x + 1}  = 1\);

\(\sqrt {x + 4}  + \sqrt {x - 1}  = 2\)

Gợi ý làm bài

\(A = \sqrt x  + \sqrt {x + 1} \) xác định khi và chỉ khi:

\(\left\{ \matrix{
x \ge 0 \hfill \cr
x + 1 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 0 \hfill \cr
x \ge -1 \hfill \cr} \right. \Leftrightarrow \,x \ge 0\)

\(B = \sqrt {x + 4}  + \sqrt {x - 1} \) xác định khi và chỉ khi:

\(\left\{ \matrix{
x + 4 \ge 0 \hfill \cr
x - 1 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 4 \hfill \cr
x \ge 1 \hfill \cr} \right. \Leftrightarrow x \ge 1\) 

a) Với \(x \ge 0\) ta có: \(x + 1 \ge 1 \Rightarrow \sqrt {x + 1}  \ge 1\)

Suy ra: \(A = \sqrt x  + \sqrt {x + 1}  \ge 1\)

Với \(x \ge 1\) ta có:

\(x + 4 \ge 1 + 4 \Leftrightarrow x + 4 \ge 5 \Leftrightarrow \sqrt {x + 4}  \ge \sqrt 5 \)

Suy ra: \(B = \sqrt {x + 4}  + \sqrt {x - 1}  \ge 5\)

b.*\(\sqrt x  + \sqrt {x + 1}  = 1\)

Điều kiện : \(x \ge 0\)

Ta có: \(\sqrt x  + \sqrt {x + 1}  \ge 1\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt x  = 0\) và \(\sqrt {x + 1}  = 1\)

Suy ra: x = 0

* \(\sqrt {x + 4}  + \sqrt {x - 1}  = 2\)

Ta có: \(\sqrt {x + 4}  + \sqrt {x - 1}  \ge \sqrt 5 \)

Mà: \(\sqrt 5  > \sqrt 4  \Leftrightarrow \sqrt 5  > 2\)

Vậy không có giá trị nào của x để \(\sqrt {x + 4}  + \sqrt {x - 1}  = 2\) .

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan