Tam giác ABC cân tại A, BC = 12cm, đường cao AH = 4cm. Tính bán kính của đường tròn ngoại tiếp tam giác ABC.
Giải:
Kéo dài đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.
Vì tam giác ABC cân tại A nên AH là đường trung trực của BC. Suy ra AD là đường trung trực của BC.
Khi đó O thuộc AD hay AD là đường kính của đường tròn ngoại tiếp tam giác ABC.
Tam giác ACD nội tiếp trong (O) có AD là đường kính suy ra: \(\widehat {ACD} = 90^\circ \)
Tam giác ACD vuông tại C nên theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:\(C{H^2} = HA.HD\)
Suy ra:\(HD = {{C{H^2}} \over {HA}} = {{{{\left( {{{BC} \over 2}} \right)}^2}} \over {HA}}\)
=\({{{{\left( {{{12} \over 2}} \right)}^2}} \over 4} = {{{6^2}} \over 4} = {{36} \over 4} = 9\) (cm)
Ta có: AD = AH +HD = 4 + 9 = 13 (cm)
Vậy bán kính của đường tròn (O) là: \(R = {{AD} \over 2} = {{13} \over 2} = 6,5\) (cm)
Sachbaitap.com
>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục