Bài 20 trang 41 SBT Toán 10 - Cánh Diều
Tung một đồng xu hai lần liên tiếp
a) Xác suất của biến cố “Kết quả của hai lần tung là khác nhau” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{4}\) C. \(\frac{3}{4}\) D. \(\frac{1}{3}\)
b) Xác suất của biến cố “Hai lần tung đều xuất hiện mặt sấp là:
A. \(\frac{1}{2}\) B. \(\frac{1}{4}\) C. \(\frac{3}{4}\) D. \(\frac{1}{3}\)
c) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt sấp” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{4}\) C. \(\frac{3}{4}\) D. \(\frac{1}{3}\)
d) Xác suất của biến cố “Mặt sấp xuất hiện đúng một lần” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{4}\) C. \(\frac{3}{4}\) D. \(\frac{1}{3}\)
Lời giải:
Tung đồng xu 2 lần liên tiếp
\(\begin{array}{l} \Rightarrow \Omega = \{ SN;SS;NS;NN\} \\ \Rightarrow n\left( \Omega \right) = 4\end{array}\)
a) “Kết quả của hai lần tung là khác nhau” \( \Rightarrow A = \{ SN;NS\} \Rightarrow n\left( A \right) = 2\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Chọn A.
b) “Hai lần tung đều xuất hiện mặt sấp” \( \Rightarrow A = \{ SS\} \Rightarrow n\left( A \right) = 1\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{4}\)
Chọn B.
c) “Lần thứ nhất xuất hiện mặt sấp” \( \Rightarrow A = \{ SN;SS\} \Rightarrow n\left( A \right) = 2\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Chọn A.
d) “Mặt sấp xuất hiện đúng một lần” \( \Rightarrow A = \{ SN;NS\} \Rightarrow n\left( A \right) = 2\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Chọn A.
Bài 21 trang 42 SBT Toán 10 - Cánh Diều
Gieo một con xúc xắc hai lần liên tiếp
a) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{6}\) C. \(\frac{1}{{36}}\) D. \(\frac{1}{4}\)
b) Xác suất của biến cố “Lần thứ nhất xuất hiện mặt 6 chấm” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{6}\) C. \(\frac{1}{{36}}\) D. \(\frac{1}{4}\)
c) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là giống nhau” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{6}\) C. \(\frac{1}{{36}}\) D. \(\frac{1}{4}\)
d) Xác suất của biến cố “Số chấm xuất hiện ở hai lần gieo là số chẵn” là:
A. \(\frac{1}{2}\) B. \(\frac{1}{6}\) C. \(\frac{1}{{36}}\) D. \(\frac{1}{4}\)
Lời giải:
Gieo một con xúc xắc hai lần liên tiếp \( \Rightarrow \Omega = \{ (x;y)|1 \le x;y \le 6\} \Rightarrow n\left( \Omega \right) = 6.6 = 36\)
a) “Lần thứ nhất xuất hiện mặt 1 chấm, lần thứ hai xuất hiện mặt 3 chấm” \( \Rightarrow A = \{ (1;3)\} \Rightarrow n\left( A \right) = 1\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{36}}\)
Chọn C.
b) “Lần thứ nhất xuất hiện mặt 6 chấm” \( \Rightarrow A = \{ (6;y)|1 \le y \le 6\} \Rightarrow n\left( A \right) = 1.6 = 6\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\)
Chọn B.
c) “Số chấm xuất hiện ở hai lần gieo là giống nhau” \( \Rightarrow A = \{ (x;x)|1 \le x \le 6\} \Rightarrow n\left( A \right) = 1 + 1 + 1 + 1 + 1 + 1 = 6\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\)
Chọn B.
d) “Số chấm xuất hiện ở hai lần gieo là số chẵn” \( \Rightarrow n\left( A \right) = 3.3 = 9\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{9}{{36}} = \frac{1}{4}\)
Chọn D.
Bài 22 trang 42 SBT Toán 10 - Cánh Diều
Tung một đồng xu hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:
a) \(A = \left\{ {NS;SS} \right\}\) b) \(b = \left\{ {NN;NS;SN;SS} \right\}\)
Lời giải:
a) \(A = \left\{ {NS;SS} \right\}\)
\( \Rightarrow \) A: “Lần thứ hai xuất hiện mặt sấp”
b) \(b = \left\{ {NN;NS;SN;SS} \right\}\)
\( \Rightarrow \) B: “Lần thứ nhất xuất hiện mặt sấp hoặc mặt ngửa”
Bài 23 trang 42 SBT Toán 10 - Cánh Diều
Tung một đồng xu hai lần liên tiếp. Tính xác suất của biến cố “Lần thứ hai xuất hiện mặt ngửa”
Lời giải:
Tung một đồng xu hai lần liên tiếp \( \Rightarrow n\left( \Omega \right) = 2.2 = 4\)
a) “Lần thứ hai xuất hiện mặt ngửa” \( \Rightarrow n\left( A \right) = 2.1 = 2\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Bài 24 trang 42 SBT Toán 10 - Cánh Diều
Gieo một xúc xắc hai lần liên tiếp. Phát biểu mỗi biến cố sau dưới dạng mệnh đề nêu sự kiện:
a) \(C = \left\{ {\left( {1;1} \right)} \right\}\)
b) \(D = \left\{ {\left( {1;6} \right);\left( {6;1} \right)} \right\}\)
c) \(G = \left\{ {\left( {3;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {6;6} \right)} \right\}\)
d) \(E = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;3} \right);\left( {3;1} \right);\left( {3;5} \right);\left( {5;5} \right);\left( {5;1} \right);\left( {5;3} \right)} \right\}\)
Phương pháp:
Dựa vào các tập hợp phát biểu biến cố dưới dạng mệnh đề
Lời giải:
a) C: “Số chấm xuất hiện ở hai lần gieo đều là 1”
b) D: “Giá trị tuyệt đối của hiệu số chấm giữa hai lần gieo là 5”
c) E: “Số chấm xuất hiện ở hai lần gieo chia hết cho 3”
d) G: “Tích số chấm xuất hiện ở hai lần gieo là số lẻ”
Bài 25 trang 42 SBT Toán 10 - Cánh Diều
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:
a) A: “Lần thứ hai xuất hiện mặt 5 chấm”
b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7”
c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3”
d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố”
e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai”
Lời giải:
Gieo một con xúc xắc hai lần liên tiếp \( \Rightarrow \Omega = \{ (x;y)|1 \le x;y \le 6\} \Rightarrow n\left( \Omega \right) = 6.6 = 36\)
a) A: “Lần thứ hai xuất hiện mặt 5 chấm” \(A = \left\{ {\left( {x;5} \right)|x = 1;2;3;4;5;6} \right\}\)\( \Rightarrow n\left( A \right) = 6.1 = 6\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\)
b) B: “Tổng số chấm xuất hiện trong hai lần gieo bằng 7\(A = \left\{ {\left( {1;6} \right);\left( {6;1} \right);\left( {2;5} \right);\left( {5;2} \right);\left( {3;4} \right);\left( {4;3} \right)} \right\}\)\( \Rightarrow n\left( A \right) = \left( {1 + 1 + 1} \right).2 = 6\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\)
c) C: “Tổng số chấm xuất hiện trong hai lần gieo chia hết cho 3” \(A = \left\{ {\left( {1;2} \right);\left( {2;1} \right);\left( {1;5} \right);\left( {5;1} \right);\left( {2;4} \right);\left( {4;2} \right);\left( {3;3} \right);\left( {3;6} \right);\left( {6;3} \right);\left( {4;5} \right);\left( {5;4} \right);\left( {6;6} \right)} \right\}\)\( \Rightarrow n\left( A \right) = \left( 5 \right).2 + 1 + 1 = 12\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{36}} = \frac{1}{3}\)
d) D: “Số chấm xuất hiện lần thứ nhất là số nguyên tố” \(A = \left\{ \begin{array}{l}\left( {1;2} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\\\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\end{array} \right\}\)\( \Rightarrow n\left( A \right) = 18\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{18}}{{36}} = \frac{1}{2}\)
e) E: “Số chấm xuất hiện lần thứ nhất nhỏ hơn số chấm xuất hiện lần thứ hai” \(A = \left\{ \begin{array}{l}\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\\\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;5} \right);\left( {4;6} \right);\left( {5;6} \right)\end{array} \right\}\)\( \Rightarrow n\left( A \right) = 15\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{36}} = \frac{5}{{12}}\)
Bài 26 trang 43 SBT Toán 10 - Cánh Diều
Tung một đồng xu 3 lần liên tiếp
a) Tìm số phần tử của tập hợp \(\Omega \) là không gian mẫu trong trò chơi trên
b) Xác định mỗi biến cố:
A: “Lần thứ hai xuất hiện mặt ngửa”
B: “Mặt sấp xuất hiện đúng hai lần”
Lời giải:
a) Tung một đồng xu 3 lần liên tiếp \( \Rightarrow n\left( \Omega \right) = 2.2.2 = 8\)
b) Xác định mỗi biến cố:
A: “Lần thứ hai xuất hiện mặt ngửa” \(A = \left\{ {NNN;NNS;SNN;SNS} \right\}\)\( \Rightarrow n\left( A \right) = 4\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{4}{8} = \frac{1}{2}\)
B: “Mặt sấp xuất hiện đúng hai lần” \(B = \left\{ {NSS;SNS;SSN} \right\}\)\( \Rightarrow n\left( B \right) = 3\)
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{8}\)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục