Bài 4.16 trang 74 SGK Toán 7 tập 1 - Kết nối tri thức
Cho hai tam giác ABC và DEF thoả mãn \(AB = DE,AC = DF,\widehat {BAC} = \widehat {EDF} = {60^\circ },BC = 6\;{\rm{cm}},\widehat {ABC} = {45^\circ }\). Tính độ dài cạnh EF và số đo các góc ACB, DEF, EFD.
Phương pháp:
Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc - cạnh
Từ đó suy ra các cặp cạnh và các cặp góc tương ứng bằng nhau
Lời giải:
Bài 4.17 trang 74 SGK Toán 7 tập 1 - Kết nối tri thức
Cho hai tam giác ABC và DEF thoả mãn \(AB = DE\), \(\widehat {ABC} = \widehat {DEF} = {70^\circ },\widehat {BAC} = \widehat {EDF} = {60^\circ },AC = 6\;{\rm{cm}}.\)
Tính độ dài cạnh DF.
Phương pháp:
Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc.
Lời giải:
Bài 4.18 trang 74 SGK Toán 7 tập 1 - Kết nối tri thức
Cho Hình 4.44, biết \(EC = ED\) và \(\widehat {AEC} = \widehat {AED}\). Chứng minh rằng:
\(\begin{array}{*{20}{l}}{{\rm{ a) }}\Delta AEC = \Delta AED;}&{{\rm{ b) }}\Delta ABC = \Delta ABD.}\end{array}\)
Phương pháp:
Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc - cạnh.
Lời giải:
Bài 4.19 trang 74 SGK Toán 7 tập 1 - Kết nối tri thức
Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A,B,C lần lượt thuộc các tia Ox, Oy, Oz sao cho \(\widehat {CAO} = \widehat {CBO}.\)
a) Chứng minh rằng \(\Delta OAC = \Delta OBC\).
b) Lấy điểm \(M\) trên tia đối của tia CO. Chứng minh rằng \(\Delta MAC = \Delta MBC\).
Phương pháp:
a) Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc.
b) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc - cạnh.
Lời giải:
a)
Xét \(\Delta OAC\) và \(\Delta OBC\) có:
\(\widehat {AOC} = \widehat {AOB}\)(Oz là phân giác góc xOy)
OC chung
\(\widehat {CAO} = \widehat {CBO}.\)
\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)
b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)
Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù
\(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù
Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)
Xét \(\Delta MAC\) và \(\Delta MBC\) có:
AC=BC
\(\widehat {ACM} = \widehat {BCM}\)
CM chung
\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục