Xét sự đồng biến, nghịch biến của các hàm số:
a) \(y = 3{x^2} - 8{x^3}\)
b) \(y = 16x + 2{x^2} - {{16} \over 3}{x^3} - {x^4}\)
c) \(y = {x^3} - 6{x^2} + 9x\)
d) \(y = {x^4} + 8{x^2} + 5\)
Hướng dẫn làm bài
a) TXĐ: R
\(y' = 6x - 24{x^2} = 6x(1 - 4x)\)
y' = 0 <=> \(\left[ {\matrix{{x = 0} \cr {x = {1 \over 4}} \cr} } \right.\)
y' > 0 trên khoảng (0;\({1 \over 4}\) ) , suy ra y đồng biến trên khoảng (0;\({1 \over 4}\) )
y' < 0 trên các khoảng (-∞;0 ); \(({1 \over 4}; + \infty )\), suy ra y nghịch biến trên các khoảng (-∞;0 ); \(({1 \over 4}; + \infty )\)
b) TXĐ: R
\(y' = 16 + 4x - 16{x^2} - 4{x^3} = - 4(x + 4)({x^2} - 1)\)
y' = 0 <=> \(\left[ {\matrix{{x = - 4} \cr {x = - 1} \cr {x = 1} \cr} } \right.\)
Bảng biến thiên:
Vậy hàm số y đã cho đồng biến trên các khoảng (-∞; -4) và (-1; 1), nghịch biến trên các khoảng (-4; -1) và (1; +∞)
c) TXĐ: R
\(y' = 3{x^2} - 12x + 9\)
y'=0 <=> \(\left[ {\matrix{{x = 1} \cr {x = 3} \cr} } \right.\)
y' > 0 trên các khoảng (-∞; 1), (3; +∞) nên y đồng biến trên các khoảng (-∞; 1), (3; +∞)
y'< 0 trên khoảng (1; 3) nên y nghịch biến trên khoảng (1; 3)
d) TXĐ: R
\(y' = 4{x^3} + 16 = 4x({x^2} + 4)\)
y' = 0 <=> x = 0
y' > 0 trên khoảng (0; +∞) => y đồng biến trên khoảng (0; +∞)
y' < 0 trên khoảng (-∞; 0) => y nghịch biến trên khoảng (-∞; 0)
>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục