Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.38 trang 40 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Chứng minh rằng tứ giác MNPQ là một hình thang cân.

Qua tâm G của tam giác đều ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng 60°. Chứng minh rằng tứ giác MNPQ là một hình thang cân.

Giải:

Gọi \({Q_{\left( {G;{{120}^0}} \right)}}\) là phép quay tâm G góc \(120^0\). Phép quay này biến b thành a, biến CA thành AB; do đó nó biến P thành N.

Tương tự \({Q_{\left( {G;{{120}^0}} \right)}}\) cũng biến Q thành M. Từ đó suy ra \(GP = GN,GQ = GM\). Do đó hai tam giác GNQ và GPM bằng nhau, suy ra NQ = PM. Vì \({Q_{\left( {G;{{120}^0}} \right)}}\) biến PQ thành NM nên \(PQ = NM\). Từ đó suy ra hai tam giác \(NQM\) và \(PMQ\) bằng nhau. Do đó \(\widehat {NQM} = \widehat {PMQ}\). Tương tự \(\widehat {QNP} = \widehat {MPN}\).

Từ đó suy ra \(\widehat {PNQ} + \widehat {NQM} = {180^0}\)

Do đó \(NP\parallel QM\). Vậy ta có tứ giác \(MPNQ\) là hình thang cân.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH

Bài viết liên quan