Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.4 trang 100 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Chứng minh các bất đẳng thức sau (n ∈ N*)

Chứng minh các bất đẳng thức sau (n ∈ N*)

a) \({2^{n + 2}} > 2n + 5{\rm{ }}\);

b) \({\sin ^{2n}}\alpha  + {\cos ^{2n}}\alpha  \le 1\)    

Giải:

a)      Với n = 1 thì \({2^{1 + 2}} = 8 > 7 = 2.1 + 5\)

Giả sử bất đẳng thức đúng với \(n = k \ge 1\) tức là \({2^{k + 2}} > 2k + 5\,\,\,(1)\)

Ta phải chứng minh nó cũng đúng với n = k + 1, tức là \({2^{k + 3}} > 2\left( {k + 1} \right) + 5\) hay \({2^{k + 3}} > 2k + 7\,\,\,\left( 2 \right)\) 

Thật vậy, nhân hai vế của (1) với 2, ta được

\({2^{k + 3}} > 4k + 10 = 2k + 7 + 2k + 3\) 

Vì \(2k + 3 > 0\) nên \({2^{k + 3}} > 2k + 7\left( {đpcm} \right)\)

b)      Với n = 1 thì \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) bất đẳng thức đúng.

Giả sử đã có \({\sin ^{2k}}\alpha  + {\cos ^{2k}}\alpha  \le 1\) với \(k \ge 1\), ta phải chứng minh

\({\sin ^{2k + 2}}\alpha  + {\cos ^{2k + 2}}\alpha  \le 1\). 

Thật vậy, ta có:

\({\sin ^{2k + 2}}\alpha  + {\cos ^{2k + 2}}\alpha\)

\( = {\sin ^{2k}}\alpha .{\sin ^2}\alpha  + {\cos ^{2k}}\alpha .{\cos ^2}\alpha  \le {\sin ^{2k}}\alpha  + {\cos ^{2k}}\alpha  \le 1\)         

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan