Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.7 trang 100 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Chứng minh rằng với mọi n ∈ N*, ta có

Cho n số thực \({a_1},{a_2},...,{a_n}\) thoả mãn điều kiện

\( - 1 < {a_i} \le 0\) với \(i = \overline {1,n} \)

Chứng minh rằng với mọi n ∈ N*, ta có

\(\left( {1 + {a_1}} \right)\left( {1 + {a_2}} \right)...\left( {1 + {a_n}} \right) \ge 1 + {a_1} + {a_2} + ... + {a_n}\)   

Giải:

Với n = 1 bất đẳng thức đúng.

Giả sử bất đẳng thức đúng với \(n = k \ge 1\) tức là

\(\left( {1 + {a_1}} \right)\left( {1 + {a_2}} \right)...\left( {1 + {a_k}} \right) \ge 1 + {a_1} + {a_2} + ... + {a_k}\)  (1)

Nhân hai vế của (1) với \(1 + {a_{k + 1}}\) ta được

\(\eqalign{
& \left( {1 + {a_1}} \right)\left( {1 + {a_2}} \right) \ldots \left( {1 + {a_k}} \right)\left( {1 + {a_{k + 1}}} \right) \ge \left( {1 + {a_1} + {a_2} + \ldots + {a_n}} \right)\left( {1 + {a_{k + 1}}} \right) \cr
& = 1 + {a_1} + {a_2} + \ldots + {a_k} + {a_{k + 1}} + {a_1}{a_{k + 1}} + {a_2}{a_{k + 1}} + \ldots + {a_k}{a_{k + 1}} \cr}\)

Vì \({a_1}{a_{k + 1}} + {a_2}{a_{k + 1}} + ... + {a_k}.{a_{k + 1}} > 0\) nên

\(\left( {1 + {a_1}} \right)\left( {1 + {a_2}} \right)...\left( {1 + {a_k}} \right)\left( {1 + {a_{k + 1}}} \right) \ge 1 + {a_1} + {a_2} + ... + {a_k} + {a_{k + 1}}\), nghĩa là bất đẳng thức đúng với \(n = k + 1.\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan