Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.5 trang 100 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Với giá trị nào của số tự nhiên n ta có

Với giá trị nào của số tự nhiên n ta có

a) \({2^n} > 2n + 1\);

b) \({2^n} > {n^2} + 4n + 5\) ;

c) \({3^n} > {2^n} + 7n\) ?

Giải:   

Đây thực chất là bài toán giải bất phương trình trên N*.

Phương pháp : Có thể dùng phép thử, sau đó dựđoán kết quả và chứng minh.

a)     Dùng phép thử với n = 1, 2, 3, 4 ta dự đoán: Với thì \(n \ge 3\) bất đẳng thức đúng. Ta sẽ chứng minh điềuđó bằng quy nạp.

Với n = 3 hiển nhiên đã có kết quả đúng, vì 23 = 8 > 2.3 + 1 = 7

Giả sử bất đẳng thức đúng với n = k tức là \({2^k} > 2k + 1\)   (1)

ta sẽ chứng minh bất đẳng thức đúng với n = k + 1, tức là

\({2^{k + 1}} > 2k + 3\)    (2)

Thật vậy, nhân hai vế của (1) với 2, ta được

\({2^{k + 1}} > 4k + 2 = 2k + 3 + 2k - 1 > 2k + 3.\) 

b)     HD: Dùng phép thử.

Với n từ 1 đến 6, bất đẳng thức đều không đúng. Tuy nhiên không thể vội vàng kết luận bất phương trình vô nghiệm.

Nếu thử tiếp ta thấy rằng bất phương trình đúng khi n = 7. Ta có thể làm tiếp để đi tới dự đoán: Với thì bất phương trình được nghiệm đúng. Sau đó chứng minh tương tự như câu a).

c)     Làm tương tự như câu a) và câu b).

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan