Cho tổng
\({S_n} = {1 \over {1.5}} + {1 \over {5.9}} + {1 \over {9.13}} + ... + {1 \over {\left( {4n - 3} \right)\left( {4n + 1} \right)}}\)
a) Tính \({S_1},{ S _2},{S_3},{S_4}\) ;
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp.
Giải:
a) Tính
\({S_1} = {1 \over 5},{S_2} = {2 \over 9},{S_3} = {3 \over {13}},{S_4} = {4 \over {17}}\)
b) Viết lại
\(\eqalign{
& S = {1 \over 5} = {1 \over {4.1 + 1}},{S_2} = {2 \over 9} = {2 \over {4.2 + 1}}, \cr
& {S_3} = {3 \over {4.3 + 1}},{S_4} = {4 \over {4.4 + 1}}. \cr} \)
Ta có thể dự đoán \({S_n} = {n \over {4n + 1}}\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục